Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Arch Toxicol ; 98(5): 1437-1455, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38443724

RESUMEN

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as gefitinib and osimertinib have primarily been used as first-line treatments for patients with EGFR-activating mutations in non-small cell lung cancer (NSCLC). Novel biomarkers are required to distinguish patients with lung cancer who are resistant to EGFR-TKIs. The aim of the study is to investigate the expression and functional role of YES1, one of the Src-family kinases, in EGFR-TKI-resistant NSCLC. YES1 expression was elevated in gefitinib-resistant HCC827 (HCC827/GR) cells, harboring EGFR mutations. Moreover, HCC827/GR cells exhibited increased reactive oxygen species (ROS) levels compared to those of the parent cells, resulting in the phosphorylation/activation of YES1 due to oxidation of the cysteine residue. HCC827/GR cells showed elevated expression levels of YES1-associated protein 1 (YAP1), NF-E2-related factor 2 (Nrf2), cancer stemness-related markers, and antioxidant proteins compared to those of the parent cells. Knockdown of YES1 in HCC827/GR cells suppressed YAP1 phosphorylation, leading to the inhibition of Bcl-2, Bcl-xL, and Cyclin D1 expression. Silencing YES1 markedly attenuated the proliferation, migration, and tumorigenicity of HCC827/GR cells. Dasatinib inhibited the proliferation of HCC827/GR cells by targeting YES1-mediated signaling pathways. Furthermore, the combination of gefitinib and dasatinib demonstrated a synergistic effect in suppressing the proliferation of HCC827/GR cells. Notably, YES1- and Nrf2-regulated genes showed a positive regulatory relationship in patients with lung cancer and in TKI-resistant NSCLC cell lines. Taken together, these findings suggest that modulation of YES1 expression and activity may be an attractive therapeutic strategy for the treatment of drug-resistant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Dasatinib/farmacología , Dasatinib/uso terapéutico , Factor 2 Relacionado con NF-E2/genética , Proliferación Celular , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Resistencia a Antineoplásicos , Receptores ErbB , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Proteínas Proto-Oncogénicas c-yes/genética
2.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 120-127, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430032

RESUMEN

Gefitinib is commonly used to be the first-line therapy for advanced non-small cell lung cancer (NSCLC). Therapeutic effect of gefitinib is reduced due to acquired resistance, and combined treatment is recommended. In this research, we planned to explore the impacts of combined treatment of lenalidomide and gefitinib on gefitinib-sensitive or -resistant NSCLC cells. The co-treatment results demonstrated that enhanced antitumor impact on NSCLC cell growth, migration, invasion, cell cycle process and apoptosis. The tumor-bearing mouse models were established using PC9/GR cells. In vivo assays also showed that lenalidomide and gefitinib synergistically inhibited mouse tumor growth along increased the survival of mice. ADRB2 was identified as a lowly expressed gene in PC9/GR cells and LUAD tumor tissues. LUAD patients with high ADRB2 expression were indicated with favorable survival outcomes. Moreover, ADRB2 was upregulated in lenalidomide and/or gefitinib-treated PC9/GR cells. ADRB2 deficiency partially offsets the suppressive impacts of lenalidomide and gefitinib co-treatment on the viability and proliferation of PC9/GR cells. Additionally, lenalidomide and gefitinib cotreatment significantly inactivated the mTOR/PI3K/AKT signaling pathway compared with each treatment alone. Rescue assays were performed to explore whether lenalidomide and gefitinib synergistically inhibited the growth of PC9/GR cells via the PI3K/AKT pathway. PI3K activator SC79 significantly restored reduced cell proliferation, migration and invasion along with elevated cell cycle arrest and apoptosis caused by lenalidomide and gefitinib cotreatment. In conclusion, lenalidomide and gefitinib synergistically suppressed LUAD progression and attenuated gefitinib resistance by upregulating ADRB2 and inactivating the mTOR/PI3K/AKT signaling pathway in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Gefitinib , Lenalidomida , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/genética , Gefitinib/farmacología , Gefitinib/uso terapéutico , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/uso terapéutico , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 175-184, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403350

RESUMEN

The occurrence and development of tumors are associated with the cell energy metabolism. Inhibiting energy metabolism of lung cancer cells is an important strategy to overcome drug resistance. Based on the cellular energy metabolism pathway, this study observed the effect of combination of shikonin(SKN) and gefitinib(GFB) on the drug resistance in non-small cell lung cancer and explored the underlying mechanism. The human non-small cell lung cancer line HCC827/GR resistant to gefitinib was used as the cell model in vitro. The CCK-8 assay and flow cytometry were employed to investigate the cell viability and apoptosis, respectively. The high performance liquid chromatography was employed to measure the intracellular accumulation of GFB. A Seahorse XFe96 Analyzer was used to detect the changes of cellular energy metabolism. Western blot was employed to determine the expression of the proteins involved in the drug resistance. The tumor-bearing nude mouse model was used to verify the efficacy of SKN+GFB in overcoming drug resistance in vivo. The results showed that SKN+GFB significantly reduced the IC_(50) of GFB on HCC827/GR cells, with the combination index of 0.628, indicating that the combination of the two drugs had a synergistic effect and promoted cell apoptosis. SKN increased the intracellular accumulation of GFB. SKN+GFB lowered the oxygen consumption rate(OCR) and glycolytic proton efflux rate(GlycoPER) in cell energy metabolism, and down-regulated the overexpression of PKM2, p-EGFR, P-gp, and HIF-1α in drug resistance. The results of reversing drug resistance test in vivo showed that GFB or SKN alone had no significant antitumor effect, while the combination at different doses induced the apoptosis of the tumor tissue and inhibited the expression of PKM2 and P-gp, demonstrating a significant antitumor effect. Moreover, the tumor inhibition rate in the high-dose combination group reached 64.01%. In summary, SKN+GFB may interfere with the energy metabolism to limit the function of HCC827/GR cells, thus reversing the GFB resistance in non-small cell lung cancer.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Naftoquinonas , Animales , Ratones , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinazolinas/farmacología , Resistencia a Antineoplásicos , Proliferación Celular , Línea Celular Tumoral , Apoptosis
4.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397056

RESUMEN

The development of acquired resistance to small molecule tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) signaling has hindered their efficacy in treating non-small cell lung cancer (NSCLC) patients. Our previous study showed that constitutive activation of the 70 kDa ribosomal protein S6 kinase 1 (S6K1) contributes to the acquired resistance to EGFR-TKIs in NSCLC cell lines and xenograft tumors in nude mice. However, the regulatory mechanisms underlying S6K1 constitutive activation in TKI-resistant cancer cells have not yet been explored. In this study, we recapitulated this finding by taking advantage of a gefitinib-resistant patient-derived xenograft (PDX) model established through a number of passages in mice treated with increasing doses of gefitinib. The dissociated primary cells from the resistant PDX tumors (PDX-R) displayed higher levels of phosphor-S6K1 expression and were resistant to gefitinib compared to cells from passage-matched parental PDX tumors (PDX-P). Both genetic and pharmacological inhibition of S6K1 increased sensitivity to gefitinib in PDX-R cells. In addition, both total and phosphorylated mechanistic target of rapamycin kinase (MTOR) levels were upregulated in PDX-R and gefitinib-resistant PC9G cells. Knockdown of MTOR by siRNA decreased the expression levels of total and phosphor-S6K1 and increased sensitivity to gefitinib in PDX-R and PC9G cells. Moreover, a transcription factor ELK1, which has multiple predicted binding sites on the MTOR promoter, was also upregulated in PDX-R and PC9G cells, while the knockdown of ELK1 led to decreased expression of MTOR and S6K1. The chromatin immunoprecipitation (ChIP)-PCR assay showed the direct binding between ELK1 and the MTOR promoter, and the luciferase reporter assay further indicated that ELK1 could upregulate MTOR expression through tuning up its transcription. Silencing ELK1 via siRNA transfection improved the efficacy of gefitinib in PDX-R and PC9G cells. These results support the notion that activation of ELK1/MTOR/S6K1 signaling contributes to acquired resistance to gefitinib in NSCLC. The findings in this study shed new light on the mechanism for acquired EGFR-TKI resistance and provide potential novel strategies by targeting the ELK1/MTOR/S6K1 pathway.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Gefitinib , Neoplasias Pulmonares , Proteína Elk-1 con Dominio ets , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Proteínas Quinasas S6 Ribosómicas , ARN Interferente Pequeño/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , /uso terapéutico
5.
J Clin Oncol ; 42(12): 1350-1356, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38324744

RESUMEN

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.Osimertinib has been established as a standard of care for patients with common sensitizing EGFR-mutant advanced non-small-cell lung cancer (NSCLC) although the sequential approach (first-generation inhibitor gefitinib followed by osimertinib) has not been formally compared. The phase II APPLE trial (ClinicalTrials.gov identifier: NCT02856893) enrolled 156 treatment-naïve patients, and two treatment strategies were evaluated: osimertinib up front or the sequential treatment approach with gefitinib up front followed by osimertinib at the time of progression, either molecular progression (detection of plasma T790M resistance mutation) regardless of the radiologic status or just at the time of radiologic progression. Patients' characteristics were well balanced, except for the higher proportion of baseline brain metastases in the sequential approach (29% v 19%). Per protocol, 73% of patients switched to osimertinib in the sequential arm. Up-front treatment with osimertinib was associated with a lower risk of brain progression versus the sequential approach (hazard ratio [HR], 0.54 [90% CI, 0.34 to 0.86]), but a comparable overall survival was observed between both strategies (HR, 1.01 [90% CI, 0.61 to 1.68]), with the 18-month survival probability of 84% and 82.3%, respectively. The APPLE trial suggests that a sequential treatment approach is associated with more frequent progression in the brain but a similar survival in advanced EGFR-mutant NSCLC.


Asunto(s)
Acrilamidas , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Receptores ErbB/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Compuestos de Anilina/uso terapéutico
6.
Biomed Pharmacother ; 173: 116306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401520

RESUMEN

Clinical resistance to EGFR tyrosine kinase inhibitors in non-small-cell lung cancer (NSCLC) remains a significant challenge. Recent studies have indicated that the number of myeloid-derived suppressor cells (MDSCs) increases following gefitinib treatment, correlating with a poor patient response in NSCLC. Our study revealed that gefitinib treatment stimulates the production of CCL2, which subsequently enhances monocyte (M)-MDSC migration to tumor sites. Chidamide, a selective inhibitor of the histone deacetylase subtype, counteracted the gefitinib-induced increase in CCL2 levels in tumor cells. Additionally, chidamide down-regulated the expression of CCR2 in M-MDSCs, inhibiting their migration. Furthermore, chidamide attenuated the immunosuppressive function of M-MDSCs both alone and in combination with gefitinib. Chidamide also alleviated tumor immunosuppression by reducing the number of M-MDSCs in LLC-bearing mice, thereby enhancing the antitumor efficacy of gefitinib. In conclusion, our findings suggest that chidamide can improve gefitinib treatment outcomes, indicating that MDSCs are promising targets in NSCLC.


Asunto(s)
Aminopiridinas , Benzamidas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células Supresoras de Origen Mieloide , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Gefitinib/farmacología , Gefitinib/uso terapéutico , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Inmunosupresores/uso terapéutico , Resultado del Tratamiento , Resistencia a Antineoplásicos
7.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338651

RESUMEN

The epidermal growth factor receptor (EGFR) is a common driver of non-small cell lung cancer (NSCLC). Clathrin-mediated internalization (CMI) sustains EGFR signaling. AXL is associated with resistance to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutated (EGFRM) NSCLC. We investigated the effects of Leucine zipper downregulated in cancer-1 (LDOC1) on EGFR CMI and NSCLC treatment. Coimmunoprecipitation, double immunofluorescence staining, confocal microscopy analysis, cell surface labelling assays, and immunohistochemistry studies were conducted. We revealed that LDOC1 interacts with clathrin adaptors through binding motifs. LDOC1 depletion promotes internalization and plasma membrane recycling of EGFR in EGFRM NSCLC PC9 and HCC827 cells. Membranous and cytoplasmic EGFR decreased and increased, respectively, in LDOC1 (-) NSCLC tumors. LDOC1 depletion enhanced and sustained activation of EGFR, AXL, and HER2 and enhanced activation of HER3 in PC9 and HCC827 cells. Sensitivity to first-generation EGFR-TKIs (gefitinib and erlotinib) was significantly reduced in LDOC1-depleted PC9 and HCC827 cells. Moreover, LDOC1 downregulation was significantly associated (p < 0.001) with poor overall survival in patients with EGFRM NSCLC receiving gefitinib (n = 100). In conclusion, LDOC1 may regulate the efficacy of first-generation EGFR-TKIs by participating in the CMI of EGFR. Accordingly, LDOC1 may function as a prognostic biomarker for EGFRM NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Leucina Zippers , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Mutación , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo
8.
Adv Sci (Weinh) ; 11(15): e2305541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351659

RESUMEN

Non-small-cell lung cancer (NSCLC) is a highly lethal tumor that often develops resistance to targeted therapy. It is shown that Tank-binding kinase 1 (TBK1) phosphorylates AGO2 at S417 (pS417-AGO2), which promotes NSCLC progression by increasing the formation of microRNA-induced silencing complex (miRISC). High levels of pS417-AGO2 in clinical NSCLC specimens are positively associated with poor prognosis. Interestingly, the treatment with EGFR inhibitor Gefitinib can significantly induce pS417-AGO2, thereby increasing the formation and activity of oncogenic miRISC, which may contribute to NSCLC resistance to Gefitinib. Based on these, two therapeutic strategies is developed. One is jointly to antagonize multiple oncogenic miRNAs highly expressed in NSCLC and use TBK1 inhibitor Amlexanox reducing the formation of oncogenic miRISC. Another approach is to combine Gefitinib with Amlexanox to inhibit the progression of Gefitinib-resistant NSCLC. This findings reveal a novel mechanism of oncogenic miRISC regulation by TBK1-mediated pS417-AGO2 and suggest potential therapeutic approaches for NSCLC.


Asunto(s)
Aminopiridinas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , MicroARNs/genética , MicroARNs/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Fosforilación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/genética
9.
Nat Commun ; 15(1): 1823, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418463

RESUMEN

In this phase II, single arm trial (ACTRN12617000720314), we investigate if alternating osimertinib and gefitinib would delay the development of resistance to osimertinib in advanced, non-small cell lung cancer (NSCLC) with the epidermal growth factor receptor (EGFR) T790M mutation (n = 47) by modulating selective pressure on resistant clones. The primary endpoint is progression free-survival (PFS) rate at 12 months, and secondary endpoints include: feasibility of alternating therapy, overall response rate (ORR), overall survival (OS), and safety. The 12-month PFS rate is 38% (95% CI 27.5-55), not meeting the pre-specified primary endpoint. Serial circulating tumor DNA (ctDNA) analysis reveals decrease and clearance of the original activating EGFR and EGFR-T790M mutations which are prognostic of clinical outcomes. In 73% of participants, loss of T790M ctDNA is observed at progression and no participants have evidence of the EGFR C797S resistance mutation following the alternating regimen. These findings highlight the challenges of treatment strategies designed to modulate clonal evolution and the clinical importance of resistance mechanisms beyond suppression of selected genetic mutations in driving therapeutic escape to highly potent targeted therapies.


Asunto(s)
Acrilamidas , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Mutación , Inhibidores de Proteínas Quinasas/efectos adversos , Compuestos de Anilina/uso terapéutico
10.
Lung Cancer ; 188: 107468, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181454

RESUMEN

BACKGROUND: MET and AXL dysregulations are implicated in acquired resistance to EGFR-TKIs in NSCLC. But consensus on the optimal definition for MET/AXL dysregulations in EGFR-mutant NSCLC is lacking. Here, we investigated the efficacy and tolerability of ningetinib (a MET/AXL inhibitor) plus gefitinib in EGFR-mutant NSCLC, and evaluated the clinical relevance of MET/AXL dysregulations by different definitions. METHODS: Patients in this phase 1b dose-escalation/dose-expansion trial received ningetinib 30 mg/40 mg/60 mg plus gefitinib 250 mg once daily. Primary endpoints were tolerability (dose-escalation) and objective response rate (dose-expansion). MET/AXL status were analyzed using FISH and IHC. RESULTS: Between March 2017 and January 2021, 108 patients were enrolled. The proportion of MET focal amplification, MET polysomy, MET overexpression, AXL amplification and AXL overexpression is 18.1 %, 5.6 %, 55.8 %, 8.1 % and 45.3 %, respectively. 6.8 % patients have concurrent MET amplification and AXL overexpression. ORR is 30.8 % for tumors with MET amplification, 0 % for MET polysomy, 24.1 % for MET overexpression, 20 % for AXL amplification and 27.6 % for AXL overexpression. For patients with concurrent MET amplification and AXL overexpression, ningetinib plus gefitinib provides an ORR of 80 %, DCR of 100 % and median PFS of 4.7 months. Tumors with higher MET copy number and AXL expression tend to have higher likelihood of response. Biomarker analyses show that MET focal amplification and overexpression are complementary in predicting clinical benefit from MET inhibition, while AXL dysregulations defined by an arbitrary level may dilute the efficacy of AXL blockade. CONCLUSIONS: This study demonstrates that combined blockade of MET, AXL and EGFR is a feasible strategy for a subset of EGFR-mutant NSCLC. TRIAL REGISTRATION: Chinadrugtrials.org.cn, CTR20160875.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutación/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Biomarcadores
11.
Recent Pat Anticancer Drug Discov ; 19(2): 247-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38214361

RESUMEN

BACKGROUND: Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been proven a long-lasting treatment effect in pulmonary adenocarcinoma, most patients still progressed within one year due to the acquired resistance. Complex mutations of rare rare sites after acquiring resistance are rarely reported in pulmonary adenocarcinoma. CASE PRESENTATION: A 62-year-old woman was diagnosed with pulmonary adenocarcinoma with stage IV. Genetic testing at the initial treatment showed EGFR L858R positive. After being treated with gefitinib, persistent 2 years disease progression occurred due to drug resistance. The genetic testing showed that EGFR L858R was eliminated, while a rare rare complex mutation of L861Q/G719X appeared. After 160 mg furmonertinib was treated for 1 month, the primary tumor regressed and the intracranial lesions disappeared. The patient has achieved progression-free survival (PFS) for more than 20 months. CONCLUSION: Pulmonary adenocarcinoma with rare rare complex mutations in EGFR induced by gefitinib resistance and disease progression might benefit from furmonertinib treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Indoles , Neoplasias Pulmonares , Piridinas , Pirimidinas , Femenino , Humanos , Persona de Mediana Edad , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Mutación , Progresión de la Enfermedad
12.
Aging (Albany NY) ; 16(1): 550-567, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194721

RESUMEN

BACKGROUND: In real-world practice, most patients with lung cancer are diagnosed when they are aged ≥65 years. However, clinical trials tend to lack data for the elderly population. Therefore, we aimed to describe the effectiveness and safety of afatinib, gefitinib, and erlotinib for elderly patients with epidermal growth factor receptor (EGFR)-mutated advanced non-small-cell lung cancer (NSCLC). METHODS: Treatment-naïve patients with EGFR-mutated advanced NSCLC were enrolled at many hospitals in Taiwan. Patient characteristics and the effectiveness and safety of afatinib, gefitinib, and erlotinib were compared. RESULTS: This study enrolled 1,343 treatment-naïve patients with EGFR-mutated advanced NSCLC, of whom 554 were aged <65 years, 383 were aged 65-74 years, 323 were aged 75-84 years, and 83 were aged ≥85 years. For elderly patients, afatinib was more effective, with a median progression-free survival (PFS) of 14.7 months and overall survival (OS) of 22.2 months, than gefitinib (9.9 months and 17.7 months, respectively) and erlotinib (10.8 months and 18.5 months, respectively; PFS: p = 0.003; OS: p = 0.026). However, grade ≥3 adverse events, including skin toxicities, paronychia, mucositis, and diarrhea, were more frequently experienced by patients receiving afatinib than those receiving gefitinib or erlotinib. CONCLUSIONS: This large retrospective study provides real-world evidence of the effectiveness and safety of EGFR-TKIs for elderly patients with EGFR-mutated advanced NSCLC, a population that is often underrepresented in clinical trials and real-world evidence. Afatinib was more effective as a first-line treatment than gefitinib or erlotinib for elderly patients with EGFR-mutated advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anciano , Humanos , Afatinib/efectos adversos , Afatinib/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Clorhidrato de Erlotinib/efectos adversos , Clorhidrato de Erlotinib/uso terapéutico , Gefitinib/efectos adversos , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos
13.
Recent Pat Anticancer Drug Discov ; 19(3): 308-315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37723963

RESUMEN

BACKGROUND: Gefitinib, an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI), frequently causes side effects when used to treat non-small cell lung cancer. OBJECTIVE: The purpose of this experiment was to investigate the side effect of gefitinib on the skin and colon of mice. METHODS: Male Balb/c nu-nu nude mice aged 4-5 weeks were used as xenograft tumor models, and gefitinib at 150 mg/kg and 225 mg/kg was started at 9 days after the xenograft tumor grew out. The mice's weights and tumor volumes were tracked concurrently, and the mouse skin adverse reactions and diarrhea were observed during the treatment. The animal tissues were subjected to biochemical and pathological evaluations after 14 days. RESULTS: Gefitinib effectively decreased the size and weight of transplanted tumors in nude mice, while also lowering body weight and raising indexes of the liver and spleen. Gefitinib could cause skin adverse reactions and diarrhea in mice. Further pathological investigation revealed tight junction- related markers in the mice's skin and colon to be reduced and macrophages and neutrophils to be increased after gefitinib treatment. CONCLUSION: The findings imply that gefitinib has negative effects on the skin and colon. Gefitinib- induced skin and colon adverse reactions in mice have been successfully modeled in this study.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Masculino , Ratones , Animales , Gefitinib/uso terapéutico , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ratones Desnudos , Quinazolinas/efectos adversos , Receptores ErbB/metabolismo , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Colon/metabolismo , Colon/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/efectos adversos , Resistencia a Antineoplásicos
14.
Environ Toxicol ; 39(3): 1283-1293, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948135

RESUMEN

BACKGROUND: Nonsmall-cell lung cancer (NSCLC) has emerged as one of the dreadful lung cancers globally due to its increased mortality rates. Concerning chemotherapy, gefitinib has been employed as an effective first-line treatment drug for NSCLC. Nonetheless, the acquired resistance to gefitinib has remained one of the treatment obstacles of NSCLC, requiring improvement in the therapeutic effect of gefitinib. METHODS: Initially, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western blotting (WB) analyses were conducted to measure micro-ribose nucleic acid (miRNA, specifically miR-578) and suppressor of cytokine signaling 2 (SOCS2) levels in the clinical samples. Further, NSCLC cell lines resistance to gefitinib, established in vitro, were transfected by miR-578 inhibitor, miR-578 mimic, and si-SOCS2. Similarly, the xenograft mouse model in vivo was constructed to validate the reversing effect of miR-578. RESULTS: Our findings indicated the increased miR-578 expression levels in the gefitinib resistance group. Further, inhibiting the miR-578 expression substantially reversed the gefitinib resistance. In addition, the miR-578 effect was modulated via the SOCS2 expression level. The decreased gefitinib resistance effect of miR-578 was weakened by inhibiting the SOCS2 expression. CONCLUSION: These findings demonstrated that miR-578 effectively abolished gefitinib resistance by regulating the SOCS2 expression within NSCLC cells in vitro and in vivo. Together, these results will undoubtedly support a reference to provide potential molecular therapeutic targets and clinical treatments for treating NSCLC patients.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Animales , Ratones , Gefitinib/farmacología , Gefitinib/uso terapéutico , Resistencia a Antineoplásicos , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Antineoplásicos/farmacología , Proliferación Celular , Proteínas Supresoras de la Señalización de Citocinas
15.
Chem Biol Drug Des ; 103(1): e14408, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009559

RESUMEN

The emergency of tyrosine kinase inhibitors has remarkably enhanced the clinical outcomes of cancer therapy, especially the use of EGFR inhibitors for non-small cell lung cancer (NSCLC). However, acquired resistance is inevitable after 8-12 months treatment. New agents or treatments are urgently required to resolve this problem. In this study, we identified that compound ZYZ384 can selectively inhibit the growth of gefitinib-resistant (G-R) lung cancer cells, without affecting that of normal lung epithelial cells. ZYZ384 induced G2 arrest in G-R NSCLC cells, decreasing the expression of Cyclin B1 and increasing the expression of P21. Meanwhile, ZYZ384 also induced apoptosis in NSCLC cells and correspondingly increased the expression of cleaved Caspase 3, 8, and 9 proteins. The expression of p-JNK, p-P38, and p-ERK were also increased in H1975 NSCLC cells treated with ZYZ384. Finally, we observed that the JNK inhibitor effectively reversed the pro-apoptotic effect of ZYZ384. In conclusion, ZYZ384 is a potential therapeutic agent to inhibit the growth of NSCLCs with EGFR mutations through activating JNK, which will help the development of related anticancer drugs.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Quinazolinas/farmacología , Receptores ErbB/metabolismo , Línea Celular Tumoral , Gefitinib/farmacología , Gefitinib/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal , Apoptosis , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
16.
Cancer Res Treat ; 56(1): 48-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37402411

RESUMEN

PURPOSE: This subgroup analysis of the Korean subset of patients in the phase 3 LASER301 trial evaluated the efficacy and safety of lazertinib versus gefitinib as first-line therapy for epidermal growth factor receptor mutated (EGFRm) non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: Patients with locally advanced or metastatic EGFRm NSCLC were randomized 1:1 to lazertinib (240 mg/day) or gefitinib (250 mg/day). The primary endpoint was investigator-assessed progression-free survival (PFS). RESULTS: In total, 172 Korean patients were enrolled (lazertinib, n=87; gefitinib, n=85). Baseline characteristics were balanced between the treatment groups. One-third of patients had brain metastases (BM) at baseline. Median PFS was 20.8 months (95% confidence interval [CI], 16.7 to 26.1) for lazertinib and 9.6 months (95% CI, 8.2 to 12.3) for gefitinib (hazard ratio [HR], 0.41; 95% CI, 0.28 to 0.60). This was supported by PFS analysis based on blinded independent central review. Significant PFS benefit with lazertinib was consistently observed across predefined subgroups, including patients with BM (HR, 0.28; 95% CI, 0.15 to 0.53) and those with L858R mutations (HR, 0.36; 95% CI, 0.20 to 0.63). Lazertinib safety data were consistent with its previously reported safety profile. Common adverse events (AEs) in both groups included rash, pruritus, and diarrhoea. Numerically fewer severe AEs and severe treatment-related AEs occurred with lazertinib than gefitinib. CONCLUSION: Consistent with results for the overall LASER301 population, this analysis showed significant PFS benefit with lazertinib versus gefitinib with comparable safety in Korean patients with untreated EGFRm NSCLC, supporting lazertinib as a new potential treatment option for this patient population.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Morfolinas , Pirazoles , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Quinazolinas , Receptores ErbB/genética , Receptores ErbB/metabolismo , República de Corea , Mutación , Inhibidores de Proteínas Quinasas/efectos adversos
17.
Acta Oncol ; 62(12): 1854-1861, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37934101

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are a standard of care treatment options in non-small cell lung cancer (NSCLC). The present study investigated real-world EGFR TKI use and patient outcomes in NSCLC. MATERIAL AND METHODS: We collected all the patients who had reimbursement for EGFR TKIs in Finland 2011-2020 and had data available at Finnish Cancer Registry. Survival and time-on-treatment (ToT) were analyzed from the first EGFR TKI purchase and patients were stratified according to the TKIs. RESULTS: Whole patient cohort consisted of 1498 individuals who were treated with erlotinib (n = 998), afatinib (n = 258), or gefitinib (n = 238). In the EGFR mutant cohort (all gefitinib users and afatinib users with non-squamous histology; n = 466), survival was comparable to registrational trials while patients treated with afatinib had improved survival (HR 0.67 CI 95% 0.53-0.85) and longer ToT (13.9 vs 11.9 months, NS) compared to those treated with gefitinib. Females treated with afatinib had improved survival (HR 0.61 CI 95% 0.44-0.83) and longer ToT (15.1 vs 12.5 months, NS) compared to gefitinib while similar was not observed in males. Later line osimertinib treatment was applied for 78 patients. Approximately 20% of the individuals treated with previous gefitinib or afatinib had later line osimertinib treatment. Efficacy analysis of osimertinib treated showed similar ToT and survival regardless of the first line EGFR TKI. CONCLUSIONS: EGFR mutants treated with afatinib have improved outcomes compared to gefitinib while later-line osimertinib was applied only for around 20% of the individuals. The study further highlights the good real-world performance of EGFR TKIs and sheds light on therapy sequencing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Femenino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Afatinib/uso terapéutico , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Estudios de Cohortes , Inhibidores de Proteínas Quinasas/efectos adversos , Resultado del Tratamiento , Receptores ErbB/genética , Mutación
18.
Analyst ; 148(24): 6325-6333, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37947047

RESUMEN

The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor that plays a crucial role in cell differentiation and tumor progression, and its overexpression is closely associated with the development and metastasis of multiple cancers. The development of a fluorescent probe capable of targeting EGFR while simultaneously integrating diagnostic and therapeutic functions could have a profound impact on the treatment of related cancers. In this study, we developed a series of EGFR-targeting probes that consisted of an environment-sensitive 1,8-naphthalimide fluorophore, a linker unit and a targeting unit (gefitinib), using a coupling strategy. The synthesized probes were first evaluated for their spectroscopic properties and cytotoxicities against different cell lines, which were selected based on their intrinsic EGFR expression levels. Remarkably, among the probes tested, GP1 showed outstanding environmental sensitivity and exhibited a specific response to tumor cells that overexpress EGFR. Furthermore, the representative probe GP1 was evaluated for its EGFR-specific targeting ability in live-cell fluorescence imaging and in vivo xenograft imaging, as well as its in vivo anti-tumor activity. The results showed that the probe GP1 had excellent EGFR-specific targeting ability, exhibited competitive replacement behavior towards the EGFR inhibitor gefitinib, and demonstrated potent anti-tumor effects in a CT-26 tumor-bearing mouse model. Overall, as a turn-on EGFR targeting fluorescent ligand, GP1 holds immense promise as a valuable tool for tumor detection and treatment.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Neoplasias , Humanos , Ratones , Animales , Gefitinib/farmacología , Gefitinib/uso terapéutico , Colorantes Fluorescentes , Quinazolinas/farmacología , Receptores ErbB , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/patología
19.
Sci Rep ; 13(1): 20323, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989860

RESUMEN

Non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutation is brain metastasis (BM)-prone. We determined the impact of this hallmark, along with EGFR subtype and generation of tyrosine kinase inhibitor (TKI) treatment, on patients' outcome. 553 metastatic EGFR-mutant NSCLC patients received front-line EGFR-TKI treatment. Progression-free survival (PFS), overall survival (OS) and secondary T790M rate were analysed. BM was observed in 211 (38.2%) patients. BM (HR 1.20 [95% CI 0.99-1.48]; p = 0.053), ECOG PS 0-1 (HR 0.71 [95% CI 0.54-0.93]; p = 0.014) and afatinib treatment (HR 0.81 [95% CI 0.66-0.99]; p = 0.045) were associated with PFS. Afatinib-treated patients without BM demonstrated a significantly longer PFS (16.3 months) compared to afatinib-treated patients with BM (13.7 months) and to gefitinib/erlotinib-treated patients with (11.1 months) or without BM (14.2 months; p < 0.001). CNS-only progression trended higher in afatinib-treated patients. ECOG PS 0-1 (HR 0.41 [95% CI 0.31-0.56]; p < 0.001) and EGFR L858R mutation (HR 1.46 [95% CI 1.13-1.88]; p = 0.003), but not BM, were the predictors for OS. BM (OR 2.02 [95% CI 1.02-4.08]; p = 0.040), afatinib treatment (OR 0.26 [95% CI 0.12-0.50]; p < 0.001) and EGFR L858R mutation (OR 0.55 [95% CI 0.28-1.05]; p = 0.070) were associated with secondary T790M rate. In BM patients, gefitinib/erlotinib-treated ones with 19 deletion mutation and afatinib-treated ones with L858R mutation had the highest and the lowest T790M rate (94.4% vs. 27.3%, p < 0.001), respectively. BM and generation of EGFR-TKI jointly impact PFS and secondary T790M rate in patients with EGFR-mutant NSCLC, whereas OS was mainly associated with EGFR subtype.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Afatinib/uso terapéutico , Clorhidrato de Erlotinib/uso terapéutico , Gefitinib/uso terapéutico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Mutación , Resultado del Tratamiento , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inducido químicamente
20.
Arch Pharm Res ; 46(11-12): 924-938, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38032449

RESUMEN

Gefitinib, as the first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has achieved great advances in the treatment of non-small cell lung cancer (NSCLC), but drug resistance will inevitably occur. Therefore, exploring the resistance mechanism of gefitinib and developing new combination treatment strategies are of great importance. In our study, the results showed that selumetinib (AZD6244) synergistically inhibited the proliferation of NSCLC with gefitinib. Selumetinib also enhanced gefitinib-induced apoptosis and migration inhibition ability in gefitinib-resistant lung cancer cell lines. Subsequently, the negative regulation between MIG6 and STAT3 was observed and verified through the STRING database and western blotting assays. Sustained activation of STAT3 was significantly downregulated when co-treatment with selumetinib in gefitinib-resistant cells. However, the downregulation of p-STAT3, resulting from the combination of selumetinib and gefitinib was counteracted by the deletion of MIG6, suggesting that selumetinib enhanced gefitinib sensitivity by regulating MIG6/STAT3 in NSCLC. In contrast, p-STAT3 was further inhibited after treatment with gefitinib and selumetinib when MIG6 was overexpressed. Furthermore, the combined administration of selumetinib and gefitinib effectively promoted the sensitivity of lung cancer xenografts to gefitinib in vivo, and the tumor inhibition rate reached 81.49%, while the tumor inhibition rate of the gefitinib monotherapy group was only 31.95%. Overall, MIG6/STAT3 negative regulation plays an important role in the sustained activation of STAT3 and the resistance to EGFR-TKIs. Our study also suggests that EGFR-TKIs combined with MEK1/2 inhibitors, such as selumetinib, may be beneficial to those NSCLC patients who develop a primary or acquired resistance to EGFR-TKIs, providing theoretical support for combining TKIs and selumetinib in clinical cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis , Resistencia a Antineoplásicos , Línea Celular Tumoral , Proliferación Celular , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...